3#include "StateSpaceUtil.h"
15template <
int stateDim,
int inputDim>
class KalmanFilterBase {
static const ConstantReturnType Zero()
static const IdentityReturnType Identity()
Eigen::Matrix< double, stateDim, 1 > getState() const
Gets the current state estimate.
Definition KalmanFilterBase.h:89
void reset(const Eigen::Matrix< double, stateDim, 1 > &state, const Eigen::Matrix< double, stateDim, 1 > &stdDevs)
Reset the filter.
Definition KalmanFilterBase.h:62
void reset(const Eigen::Matrix< double, stateDim, 1 > &state)
Reset the filter.
Definition KalmanFilterBase.h:46
Eigen::Matrix< double, stateDim, stateDim > getEstimateCovarianceMat() const
Get the current estimate covariance matrix.
Definition KalmanFilterBase.h:100
void reset(const Eigen::Matrix< double, stateDim, 1 > &state, const Eigen::Matrix< double, stateDim, stateDim > &estCovMat)
Reset the filter.
Definition KalmanFilterBase.h:78
void reset()
Reset the filter.
Definition KalmanFilterBase.h:34
virtual void predict(const Eigen::Matrix< double, inputDim, 1 > &input)=0
Use the model to predict the next system state, given the current inputs.
Eigen::Matrix< double, size, size > createCovarianceMatrix(const Eigen::Matrix< double, size, 1 > &stdDevs)
Create a covariance matrix modelling independent variables with the given standard deviations.
Definition StateSpaceUtil.h:23