|
| NoiseCovMat (const Eigen::Matrix< double, size, 1 > &stdDevs) |
| Create a time-invariant noise covariance matrix modelling independent noise with the given standard deviations.
|
|
| NoiseCovMat (const Eigen::Matrix< double, size, size > &mat) |
| Create a time-invariant noise covariance matrix equal to the given matrix.
|
|
| NoiseCovMat (const std::function< Eigen::Matrix< double, size, size >(const state_t &, const param_t &)> &func) |
| Create a time-varying noise covariance matrix.
|
|
Eigen::Matrix< double, size, size > | get (const state_t &x, const param_t ¶m) |
| Gets the noise covariance matrix, given the current state and additonal parameter.
|
|
template<int stateDim, int size, int paramSize>
class filters::statespace::NoiseCovMat< stateDim, size, paramSize >
Represents a square noise covariance matrix.
Returning the zero matrix can sometimes be dangerous depending on your model, as it may cause numerical instability or incorrect computations.
- Template Parameters
-
stateDim | The dimension of the state space for this system. This is the number of elements in the state vector. |
size | The size of this matrix. |
paramSize | The dimension of the vector accepted by get() in addition to a state vector. |
template<int stateDim, int size, int paramSize>
Gets the noise covariance matrix, given the current state and additonal parameter.
The matrix may be time-invariant, which case the values of x and param do not matter.
- Parameters
-
x | The current state vector. |
param | The parameter vector, as defined by the use of this matrix. For process noise, this is usually the input vector. For output noise this is usually the output vector. |
- Returns
- The noise covariance matrix.