|
|
| MultiSensorEKF (const statefunc_t &stateFunc, const statespace::NoiseCovMat< stateDim, processNoiseDim, inputDim > &processNoise, double dt, const std::array< Output, numOutputs > &outputs) |
| |
|
void | predict (const input_t &input) override |
| |
|
void | correct (int outputIdx, const Eigen::VectorXd &measurement) |
| |
|
template<int outputIdx> |
| void | correct (const Eigen::VectorXd &measurement) |
| |
|
void | setStateFuncJacobianX (const std::function< navtypes::Matrixd< stateDim, stateDim >(const state_t &, const input_t &, const processnoise_t &)> &stateFuncJacobianX) |
| |
|
void | setStateFuncJacobianW (const std::function< navtypes::Matrixd< stateDim, processNoiseDim >(const state_t &, const input_t &, const processnoise_t &)> &stateFuncJacobianW) |
| |
|
navtypes::Matrixd< stateDim, stateDim > | stateFuncJacobianX (const state_t &x, const input_t &u) |
| |
|
navtypes::Matrixd< stateDim, processNoiseDim > | stateFuncJacobianW (const state_t &x, const input_t &u) |
| |
| virtual void | predict (const Eigen::Matrix< double, inputDim, 1 > &input)=0 |
| | Use the model to predict the next system state, given the current inputs.
|
| |
| void | reset () |
| | Reset the filter.
|
| |
| void | reset (const Eigen::Matrix< double, stateDim, 1 > &state) |
| | Reset the filter.
|
| |
| void | reset (const Eigen::Matrix< double, stateDim, 1 > &state, const Eigen::Matrix< double, stateDim, 1 > &stdDevs) |
| | Reset the filter.
|
| |
| void | reset (const Eigen::Matrix< double, stateDim, 1 > &state, const Eigen::Matrix< double, stateDim, stateDim > &estCovMat) |
| | Reset the filter.
|
| |
| Eigen::Matrix< double, stateDim, 1 > | getState () const |
| | Gets the current state estimate.
|
| |
| Eigen::Matrix< double, stateDim, stateDim > | getEstimateCovarianceMat () const |
| | Get the current estimate covariance matrix.
|
| |